Supplementary Material
CADOps-Net: Jointly Learning CAD Operation Types and Steps from Boundary-Representations

A. CC3D-Ops Dataset

In this section, we provide more details on the proposed
CC3D-Ops dataset. First, the method used to extract the
op.step and op.type will be briefly discussed. Then, statis-
tics demonstrating the complexity of the models and show-
ing the distribution of the labels will be presented.

A.1. CC3D-Ops Label Extraction

The proposed CC3D-Ops dataset contains B-Reps with
per-face op.type and op.step annotations. An important as-
pect of segmenting faces into different construction steps of
modeling operations is that these labels come from the real
construction history of each CAD model in the dataset. In
our case, this information is obtained from the native Solid-
Works [2] Part File (.sldprt) format of a CAD model. A set
of tools were developed based on the Solidworks API [2]
to traverse a CAD model’s construction history and to as-
sign each face generated by respective modeling operation
its op.type and op.step labels in B-Rep.

A.2. Statistics

Model complexity: From the sample CC3D-Ops CAD
models (in B-Rep format) displayed in Figure 1, it can
be noted that CC3D-Ops offers a wide variety of models
both in terms of complexity and category. Figure 2 shows
the distribution of the number of faces per model for the
CC3D-Ops and Fusion360 [3] datasets as box plots. This
figure shows that the models in CC3D-Ops generally have
more faces than in Fusion360. While 90% of the models
of the Fusion360 dataset have 30 faces or less, such models
represent only 50% of CC3D-Ops. This difference between
the two datasets is further demonstrated in Figure 3, where
it can be observed that the models in CC3D-Ops tend to be
made of more CAD operation steps than for Fusion360.

CAD Operation Type Labels: The op.type face labels in-
dicate the type of CAD operation used during the design
process. While the most common CAD operation types
(such as extrusion, fillet ...) are shared among most CAD
software applications, some are software specific. The
CC3D-Ops dataset contains 11 different op.type labels: ex-
trude side, extrude end, revolve side, revolve end, cut ex-
trude side, cut extrude end, cut revolve side, cut revolve

end, fillet, chamfer and other. The other op.type represents
less common types such as helix, sweep, dome, etc. The
bar chart in Figure 4 displays the number of faces for each
op.type label. The two least common op.type labels are re-
volve end and cut revolve end and the two most common
operation types are extrude side and other. For a compar-
ison with the Fusion360 dataset, we refer the reader to [1]
where a similar bar chart can be found.

B. Further Experimental Analysis

In this section, we first analyze quantitative results on
the per class IoUs for the op.type segmentation task. Then,
some visual examples of the CADOps-Net predictions are
presented.

B.1. CAD Operation Type IoUs

As in [1], an analysis of each op.type IoU is presented.
Table | and 2 show the IoU results of each op.type la-
bel for the Fusion360 and CADOps-Net datasets respec-
tively. The results are shown for both CADOps-Net with-
out joint learning (Ours w/o JL™) and with joint learning
(Ours w/ JLT). As noted in Section 6.2 of the main paper,
the joint learning strategy does not have a significant impact
on the op.type predictions. This is particularly the case on
the Fusion360 dataset as shown in Table 1. Ours w/ JL™
achieves slightly higher IoU for each class. On the other
hand, the same trend cannot be found in the results ob-
tained from the CC3D-Ops dataset. For 6 out of the 11
op.type classes, the difference between the IoUs obtained
with joint learning and without is relatively small (less than
2%). For the op.type classes cut revolve side and cham-
fer, Ours w/o JL~ scores higher than the Ours w/ JLT by
3.9% and 5.5% respectively. However, the joint learning
method achieves higher results on 3 out of the 4 least com-
mon classes, namely cut revolve end, revolve end and cut
extrude end. In particular, for the revolve end op.type that
represents 0.17% of the dataset, the joint learning strategy
results in an IoU that is about 17% higher than without joint
learning. This demonstrates that even if the joint learning
strategy achieves a comparable mloU as without joint learn-
ing, Ours w/ JL™ is able to learn more meaningful features
for the underrepresented op.types.



Figure 1. Sample CAD models from the CC3D-Ops dataset.
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Figure 2. Box plot showing the distribution of models for the
CC3D-Ops and Fusion360 [3] datasets with respect to the num-
ber of faces per model.

Fusion360 Per class IoU
Ours w/o JL=  Ours w/ JL™

Extrude side 94.0 94.6
Extrude end 91.7 924
Cut side 82.1 83.9
Cut end 75.2 77.1
Revolve side 85.1 86.5
Revolve end 48.7 48.9
Chamfer 91.2 92.1
Fillet 97.6 97.8

Table 1. op.type per class IoU for the Fusion360 dataset. All re-
sults are expressed as percentages.

B.2. CAD Operation Types Qualitative Results

Figure 5 shows sample results from CADOps-Net for
the op.type segmentation task on both the Fusion360 and
CC3D-Ops datasets. As discussed in Section 6.2 of the
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Figure 3. Histogram showing the distribution of models for the
CC3D-Ops and Fusion360 [3] datasets with respect to the number
of op.steps per model. Models with a number of op.steps between
0 and 20 represent over 96% of CC3D-Ops.

main paper, the op.fype accuracy is not correlated to the
complexity of the models. In particular, this can be ob-
served from the results presented on the Fusion360 dataset
in which CADOps-Net sometimes fails to predict the correct
op.types for some simple models. Despite not matching the
ground truth, some predictions are still valid within the con-
text of CAD modelling, as outlined in Section 6.5.
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Figure 4. Bar graph of the number of faces for each op.type label
over the CC3D-Ops dataset. The numbers above each bar repre-
sents the percentage of the number of faces with the corresponding
type. Note: a log scale is used for the vertical axis.

CC3D-Ops Per class IoU
Ours w/o JL= Ours w/JLT

Extrude side 654 64.9
Extrude end 59.7 60.2
Cut extrude side 17.8 18.1
Cut extrude end 10.0 154
Cut revolve side 22.2 18.3
Cut revolve end 1.1 4.6
Revolve side 60.3 59.8
Revolve end 23.8 41.2
Chamfer 69.6 64.4
Fillet 84.1 83.1
Other 58.5 57.2

Table 2. op.type per class IoU for the CC3D-Ops dataset. All re-
sults are expressed as percentages.

B.3. CAD Operation Step Qualitative Results

Figure 6 displays qualitative results for the op.step seg-
mentation task on the CC3D-Ops and Fusion360
datasets. These qualitative results illustrate that while
CADOps-Net is able to make accurate predictions for mod-
els with a small number of op.steps, the op.step accuracy
decreases as the number of op.steps increases, as explained
in Section 6.2.

C. Sketch Recovery Process and Examples

In CAD modeling, sketches are considered as starting
points to build a kernel structure (in our case B-Rep) of the
desired solid model. Nevertheless, the sketches are only
part of the forward design process, and tracing them back
from the final B-Rep is not straightforward. In this section,
we provide more details about the process of sketch recov-

Algorithm 1: Sketch Recovery Algorithm

Input: B,S € [0,1)Y*F T e [0,1)N <k
Output: a set of sketches Q
1 foreach id s € {argmaxS;., Vj € [1,..., Ny]} do
2 foreach id
te {argmax’/I\‘j:, Vjiel,...,Nf]} do
3 F <« {.,fs...};/* Group face ids
(s,t) into fs of
op.type ‘extrude side’at
different op.steps */

end

4

5 end

6 foreach f£s € F do

7 compute normals {n$, Vi € £5};

8 0 < centroid of merged faces € fs;

~ . . . n$ xn?

s < optimal extrusion axis Y ; je. AExns]

R g

10 @® «+ project merged faces € f5 on a plane with
center 0 and axis G

11 end

ery introduced in Section 6.4 and present more qualitative
results.

Proposition 1 If we assume that not all faces of a B-Rep
are either orthogonal or parallel to each other, then the base
sketch-profile of the merged faces may not be co-planar, and
therefore extrusion or revolution axis may not be orthogonal
to the normals of co-faces.

Algorithm 1 describes the process for retrieving sketches
at different op.steps using CADOps-Net predictions (S
and T), assuming the proposition 1 holds over a B-Rep
when extrusion-only operation is involved. In particular,
CADOps-Net predictions of op.steps are used to group the
faces of the B-Rep that were created by a single sketch.
Among these faces, the ones created by extrude side are
identified by the op.type predictions (lines 1 to 5 of Algo-
rithm 1). These faces are denoted f5 and are considered to
compute the extrusion axis and the centroid, then the pro-
jection plane as described in lines 6 to 11 of Algorithm 1.

Figure 7 and 8 illustrate the qualitative results of sketches
recovered using CADOps-Net predictions and Algorithm 1
on randomly selected samples made by extrusions from Fu-
sion360 [3] dataset. We dissect the sketch results based on
correctly and incorrectly predicted op.steps in the two fig-
ures. We can observe that the sketch recovery is success-
ful when the predictions of op.steps are correct (Figure 7).
In Figure 8, the B-Reps were segmented into two op.steps,
while the ground truth annotations indicated that they were
designed through three op.steps. Such incorrect op.step pre-
diction impacted the sketch recovery and resulted in erro-
neous sketches.
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Figure 5. CAD operation step qualitative results on the Fusion360 (left) and CC3D-Ops (right) datasets. For the CADOps-Net ground truth
(GT) and predictions (Pred.). Correctly segmented faces are shown in green and incorrect in red in the Error columns.
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Figure 6. CAD operation step qualitative results on the Fusion360 (left) and CC3D-Ops (right) datasets.For the CADOps-Net ground truth

(GT) and predictions (Pred.), each color represents a CAD operation step. Correctly segmented faces are shown in green and incorrect in
red in the Error columns.
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Figure 7. Qualitative results on sketch recovery from correctly predicted op.types and op.steps by CADOps-Net. The models shown above

include exactly two operation steps.
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Figure 8. Qualitative results on sketch recovery from incorrectly predicted op.types and op.steps by CADOps-Net. The models shown
above include exactly three operation steps.
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